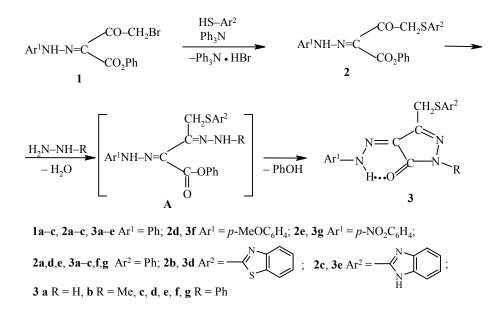
SYNTHESIS OF 4-ARYLHYDRAZONO-3-ARYLTHIOMETHYL-4,5-DIHYDRO-1H-1-R-5-PYRAZOLONES


V. N. Bodnar, V. N. Britsun, and M. O. Lozinskii

It has been established that interacting ethyl 2-arylhydrazono-4-arylthio-3-oxobutyrates with hydrazine, methylhydrazine, and phenylhydrazine forms 4-arylhydrazono-3-arylthiomethyl-4,5-dihydro-1H-1-R-pyrazolones.

Keywords: 4-arylhydrazono-3-arylthiomethyl-4,5-dihydro-1H-1-R-5-pyrazolones, hydrazine, ethyl 2-arylhydrazono-4-arylthio-3-oxobutyrates, ethyl 2-arylhydrazono-4-bromo-3-oxobutyrates.

The interaction of β -keto esters with hydrazine is the classic method of synthesizing functionalized pyrazolones [1]. Ethyl 2-arylhydrazono-3-oxobutyrate also reacts with hydrazine and its derivatives with the formation of 4-arylhydrazono-3-methyl-5-pyrazolones which possess antimicrobial and fungicidal activity [2,3], and also may be used as dyestuffs [4]. But the use of ethyl 2-arylhydrazono-3-oxobutyrate does not permit the synthesis of 5-pyrazolones modified in position 3 of the pyrazolone ring.

Previously we proposed a convenient method for the synthesis of esters of 2-arylhydrazono-4-bromo-3-oxobutyric acid and showed that they are highly reactive compounds and may be used for the synthesis of nitrogen-containing heterocycles [5-8].

Institute of Organic Chemistry, National Academy of Sciences of the Ukraine, Kiev 02094; e-mail: iochkiev@ukrpack.net. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1169-1172, August, 2003. Original article submitted May 10, 2002.

While continuing these investigations we established that esters of 2-arylhydrazono-4-arylthio-3-oxobutyric acid **2a-e**, synthesized by the interaction of esters of 2-arylhydrazono-4-bromo-3-oxobutyric acid **1a-c** with thiophenol, 2-mercaptobenzothiazole, and 2-mercaptobenzimidazole, are converted by the action of hydrazine and its derivatives (methylhydrazine and phenylhydrazine) in acetic acid into 4-arylhydrazono-3-arylthiomethyl-4,5-dihydro-1H-1-R-5-pyrazolones **3a-g**.

The yields, ¹H NMR and IR spectra, data of elemental analysis, and molecular ion peaks $[M]^+$ of the compounds synthesized are given in Tables 1 and 2. In the ¹H NMR spectra of thioethers **2a-e** the signals of the CO–CH₂S and NH groups (4.33-4.82 and 11.87-12.16 ppm respectively) are characteristic. In the IR spectra there are absorption bands for the carbonyl group (1610-1710) and the NH group (3000-3100 cm⁻¹). In the ¹H NMR spectra of pyrazolones **3a-g** signals were observed for the CH₂S group (4.16-4.74 ppm) and in the IR spectra there were absorption bands for the C=O (1660-1670) and NH (3000-3200 cm⁻¹) groups.

The yields of the heterocyclization products 3a-g were 40-67%. In our view, the formation of pyrazolones 3a-g from thioethers 2a-e proceeds through the intermediate hydrazones A [1].

It is known that due to sp^2 -hybridization of the imine nitrogen atom and restriction of rotation about the =C-C= bond, the hydrazones of dicarbonyl compounds may exist in *syn* and *anti* forms, each of which may be found in *s*-*cis* and *s*-*trans* conformations [9]. But the formation of only one conformation may be asserted for the synthesized compounds from the data of ¹H NMR spectroscopy. Consequently there is a basis for supposing that compounds **3a-g** are formed in the *syn-s-cis* form, which is the most stable since it is stabilized by an intramolecular hydrogen bond N–H···O=C [9,10]. Indirect confirmation of the formation of a hydrogen bond is the small reduction of the frequency of the carbonyl group absorption in the IR spectra of compounds **3a-g** in comparison with the initial thioethers **2a-e** (by 10-40 cm⁻¹), and in the ¹H NMR spectra of compounds **3a-g** compared with **2a-e** a reduction is observed in the chemical shift of the hydrazone fragment proton of 0.57-0.80 ppm towards low field, which is in agreement with the data of [11,12].

Com- pound	Empirical formula	Found, % Calculated, %			mp, °C	Yield, %	$[M]^+$
		С	Н	N		-	
2a	$C_{18}H_{18}N_2O_3S$	$\frac{63.34}{63.16}$	<u>5.11</u> 5.26	$\frac{8.41}{8.19}$	97-99	47	342
2b	$C_{19}H_{17}N_{3}O_{3}S_{2}$	<u>57.37</u> 57.14	$\frac{4.41}{4.26}$	$\frac{10.48}{10.53}$	112-114	59	399
2c	$C_{19}H_{18}N_4O_3S$	<u>59.35</u> 59.69	$\frac{4.50}{4.71}$	$\frac{14.34}{14.66}$	119-121	61	382
2d	$C_{19}H_{20}N_{2}O_{4}S$	<u>61.35</u> 61.29	<u>5.51</u> 5.38	$\frac{7.30}{7.53}$	69-70	69	372
2e	$C_{18}H_{17}N_3O_5S$	<u>55.69</u> 55.81	$\frac{4.22}{4.39}$	$\frac{10.56}{10.85}$	117-119	55	387
3a	$C_{16}H_{14}N_4OS$	$\frac{61.60}{61.94}$	$\frac{4.63}{4.52}$	$\frac{18.31}{18.06}$	133-134	44	310
3b	$\mathrm{C_{17}H_{16}N_4OS}$	$\frac{62.71}{62.96}$	$\frac{4.78}{4.94}$	$\frac{17.42}{17.28}$	131-132	61	324
3c	C ₂₂ H ₁₈ N ₄ OS	$\frac{68.17}{68.39}$	$\frac{4.39}{4.66}$	$\frac{14.41}{14.51}$	126-127	50	386
3d	$C_{23}H_{17}N_5OS_2$	$\frac{62.51}{62.30}$	$\frac{3.79}{3.84}$	$\frac{15.57}{15.80}$	173-175	42	443
3e	$C_{22}H_{18}N_6OS$	<u>65.01</u> 64.79	$\frac{4.13}{4.23}$	<u>19.48</u> 19.72	219-221	40	426
3f	$C_{23}H_{20}N_4O_2S$	$\frac{66.55}{66.35}$	$\frac{4.69}{4.80}$	$\frac{13.55}{13.46}$	121-123	41	416
3g	$C_{22}H_{17}N_5O_3S$	$\frac{61.35}{61.25}$	$\frac{3.79}{3.94}$	$\frac{16.45}{16.24}$	152-153	67	431

TABLE 1. Characteristics of Compounds 2a-e, 3a-g

Com- pound	IR spectrum, v, cm ⁻¹	¹ H NMR spectrum (DMSO-d ₆), δ , ppm (<i>J</i> , Hz)
2a	3000 (NH), 1700 (C=O), 1630, 1600, 1520, 1470	1.28 (3H, t, $J = 7.5$, <u>CH</u> ₃ CH ₂ O); 4.30 (2H, q, $J = 7.5$, CH ₃ <u>CH</u> ₂ O); 4.35 (2H, s, CO–CH ₂ –S); 7.08-7.42 (10H, m, 2C ₆ H ₃); 11.95 (1H, s, –NH–N=)
2b	3000 (NH), 1710 (C=O), 1600, 1530, 1470, 1430	1.30 (3H, t, <i>J</i> = 7.8, <u>CH</u> ₃ CH ₂ O); 4.29 (2H, q, <i>J</i> = 7.8, CH ₃ <u>CH</u> ₂ O); 4.95 (2H, s, CO–CH ₂ –S); 7.16-7.56 (7H, m, Ar); 7.80 (1H, s, Ar); 8.02 (1H, s, Ar); 12.16 (1H, s, –NH–N=)
2c	3100 (NH), 1670 (C=O), 1600, 1530, 1480, 1400, 1350	1.28 (3H, t, <i>J</i> = 7.2, <u>CH</u> ₃ CH ₂ O); 4.30 (2H, q, <i>J</i> = 7.2, CH ₃ <u>CH</u> ₂ O); 4.82 (2H, s, CO–CH ₂ –S); 7.13 (3H, m, Ar); 7.41-7.56 (6H, m, Ar); 12.05 (1H, s, –NH–N=); 12.52 (1H, br. s, NH)
2d	3000 (NH), 1700 (C=O), 1600, 1530, 1480, 1400	1.25 (3H, t, $J = 7.7$, <u>CH</u> ₃ CH ₂ O); 3.79 (3H, s, CH ₃ O); 4.26 (2H, q, $J = 7.7$, CH ₃ CH ₂ O); 4.33 (2H, s, CO–CH ₂ –S); 6.97 (2H, d, $J = 9.1$, p -C ₆ H ₄); 7.23-7.55 (7H, m, Ar); 12.16 (1H, s, –NH–N=)
2e	3000 (NH), 1700 (C=O), 1600, 1540, 1400, 1350	1.26 (3H, t, $J = 7.8$, <u>CH</u> ₃ CH ₂ O); 4.33 (2H, q, $J = 7.8$, CH ₃ <u>CH</u> ₂ O); 4.41 (2H, s, CO–CH ₂ –S); 7.20-7.39 (5H, m, C ₆ H ₅); 7.61 (2H, d, $J = 8.9$, p -O ₂ N–C ₆ H ₄); 8.24 (2H, d, J = 8.9, p -O ₂ N–C ₆ H ₄); 11.87 (1H, s, –NH–N=)
3a	3100 (NH), 1670 (C=O), 1600, 1550, 1490, 1400	4.16 (2H, s, CH ₂ –S); 7.21-7.46 (10H, m, 2C ₆ H ₅); 7.49 (1H, s, CO–NH); 12.44 (1H, br. s, –NH–N=)
3b	3200 (NH), 3050, 1670 (C=O), 1580, 1500,1450	3.28 (3H, s, CH ₃); 4.18 (2H, s, CH ₂ –S); 7.30-7.51 (10H, m, 2C ₆ H ₅); 12.68 (1H, br. s, –NH–N=)
3c	3100 (NH), 1670 (C=O), 1600, 1560, 1500, 1360	4.29 (2H, s, CH ₂ –S); 7.16-7.85 (15H, m, 3C ₆ H ₅); 13.32 (1H, br. s, –NH–N=)
3d	3100 (NH), 1670 (C=O), 1600, 1570, 1500, 1440	4.82 (2H, s, CH ₂ –S); 7.11-7.35 (4H, m, Ar); 7.40-7.53 (6H, m, Ar); 7.89-8.03 (4H, m, Ar); 13.11 (1H, br. s, –NH–N=)
3e	3050, 1670 (C=O), 1600, 1560, 1500, 1450, 1410	4.74 (2H, s, CH ₂ –S); 7.16 (6H, m, Ar); 7.45 (6H, m, Ar); 7.86 (2H, d, <i>J</i> = 9.1, Ar); 12.03 (1H, br. s, –NH–); 13.19 (1H, br. s, –NH–N=)
3f	3000 (NH), 1660 (C=O), 1600, 1570, 1500, 1450	3.78 (3H, s, CH ₃ O); 4.28 (2H, s, CH ₂ –S); 7.03 (2H, d, J = 9.6, p-C ₆ H ₄); 7.14-7.51 (10H, m, 2C ₆ H ₅); 7.86 (2H, d, J = 9.6, p-C ₆ H ₄); 13.18 (1H, br. s, -NH–N=)
3g	3100 (NH), 1670 (C=O), 1600, 1560, 1500, 1350	4.30 (2H, s, CH ₂ –S); 7.24-7.78 (12H, m, Ar); 8.24 (2H, d, <i>J</i> = 9.9, <i>p</i> -O ₂ N–C ₆ H ₄); 13.17 (1H, br. s, –NH–N=)

TABLE 2. Spectral Characteristics of Compounds 2a-e, 3a-g

The given method of synthesis therefore enables the preparation of previously unknown 4-arylhydrazono-4,5-dihydro-1H-1-R-5-pyrazolones containing an arylthiomethyl or hetarylthiomethyl fragment in position 3 of the pyrazolone ring.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Varian-300 (300 MHz) instrument, internal standard was TMS. The IR spectra were recorded on a Specord IR-75 instrument in KBr disks. The mass spectra were taken on a MX-1303 instrument.

Ethyl 2-Arylhydrazono-4-bromo-3-oxobutyrates (1a-c) were synthesized by the procedure of [5].

Ethyl 2-Arylhydrazono-4-arylthio-3-oxobutyrates (2a-e). A solution of thiophenol (10 mmol) and triethylamine (10 mmol) in benzene (50 ml) was added with stirring to a solution of ethyl 2-arylhydrazono-4-bromo-3-oxobutyrate (10 mmol) in benzene (40 ml). The reaction mixture was stirred at 20°C for 30 min, at 50°C for 10 min, and cooled. Triethylamine hydrochloride was filtered off, and the filtrate evaporated to dryness. The residue was recrystallized from alcohol.

4-Arylhydrazono-3-arylthiomethyl-4,5-dihydro-1H-1-R-5-pyrazolones (3a-g). A solution of hydrazine (or methylhydrazine, phenylhydrazine) (10 mmol) in acetic acid (30 ml) was added dropwise with stirring to a solution of 2-arylhydrazono-4-arylthio-3-oxobutyric acid ethyl ester (10 mmol) in acetic acid (30 ml). The reaction mixture was boiled for 8 h, cooled to room temperature, the precipitated solid was filtered off, washed with acetic acid (2×10 ml), and recrystallized from acetic acid.

REFERENCES

- 1. R. Elderfield (editor), *Heterocyclic Compounds*, Vol. 5, Wiley, New York, London (1957), [Russian translation], Izd. Inostr. Lit., Moscow (1961), p. 87.
- 2. A. C. Oiha and R. Jain, Pol. J. Chem., 56, 1553 (1982); Chem. Abstr., 101, 38397 (1984).
- 3. A. C. Oiha, R. Jain, and M. Agrawal, Natl. Acad. Sci. Lett., 6, 157 (1983); Chem. Abs., 101, 7086 (1984).
- 4. M. Kalani, D. S. Seth, A. Kumar, and B. C. Banerji, *J. Indian Chem. Soc.*, **67**, 523 (1990); *Chem. Abstr.*, **114**, 44926 (1991).
- 5. M. O. Lozinskii, S. N. Kukota, T. N. Kudrya, E. S. Gubnitskaya, and P. S. Pel'kis, *Zh. Org. Khim.*, **5**, 1432 (1969).
- 6. V. N. Bodnar, V. V. Pirozhenko, V. M. Neplyuev, and M. O. Lozinskii, *Ukr. Khim. Zh.*, **64**, No. 8, 132 (1998).
- 7. V. N. Bodnar, M. O. Lozinskii, and P. S. Pel'kis, Ukr. Khim. Zh., 47, 424 (1981).
- 8. S. N. Kukota, M. O. Lozinskii, and P. S. Pel'kis, *Ukr. Khim. Zh.*, **42**, 1162 (1976).
- 9. Yu. P. Kitaev and B. I. Buzykin, *Hydrazones* [in Russian], Nauka, Moscow (1974), p. 56.
- 10. Yu. A. Sokolova, O. A. D'yachenko, L. O. Atovmyan, V. N. Bodnar, and M. O. Lozinskii, Zh. Strukt. Khim., **30**, No. 4, 141 (1989).
- 11. L. J. Bellamy, *The Infrared Spectra of Complex Molecules*, Methuen, London, Wiley, New York (1957); [Russian translation], Izd. Inostr. Lit., Moscow (1963), pp. 142, 362.
- 12. N. D. Sokolov and V. M. Chulanovskii, *The Hydrogen Bond* [in Russian], Nauka, Moscow (1964), p. 255.